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1 INTRODUCTION 

Submarine channels act as conduits for 
turbidity currents, which have been 
identified to be the most volumetrically 
important processes for the delivery of 
sediment and organic carbon to the deep sea 
(Bouma 2000; Peakall et al., 2007; Paull et 
al., 2010; Hage et al., 2018). Turbidity 
currents are of great importance not only to 
our general understanding of global 
sediment transport processes, but also 
because of the environmental hazards they 
pose to subsea infrastructure such as 
communication cables or pipelines (Piper et 
al., 1999, Carter et al., 2014) and tsunamis 
related to submarine slope failures (Prior et 
al., 1982).  

Bathymetric mapping of submarine canyon-
channel-fan systems has recently revealed 
that these zones can be dominated by 
upslope migrating crescentic bedforms 
(Symons et al., 2016; Hage, et al., 2018) and 
recent system-scale wide process studies in 
submarine systems have demonstrated links 
between seafloor morphology, upward 
migration of crescentic bedforms, sediment 
distribution and the evolving flow (Hughes 
Clarke, 2016).  

Combinations of numerical and physical 
experiments over a number of years have 
explored the formation of cyclic steps in 
turbidity current settings, which have been 
shown to typically generate deposits 
characterised by back-stepping beds (e.g. 
Spinewine et al., 2009, Postma and 
Cartigny, 2014, Covault et al., 2017). In 
contrast, many outcrops that have been 
interpreted as cyclic step deposits do not 
show these regular back-stepping beds, and 
can be frequently characterized by 
asymmetric scours filled with massive sands 
(e.g. Duller et al., 2008, Dietrich et al., 
2016). Modern analogues for these massive 
sands have been reported in sediment cores 
collected from crescentic bedforms in 
Monterey canyon (Paull et al., 2011); and 
similar bedforms have been associated with 
cyclic steps on the Squamish Delta, B.C., 
Canada (Hughes Clarke, 2016).  

Very recent work has also identified that 
flows over these bedform features can be 
initially driven by a fast moving, dense basal 
layer (Paull et al., 2018). However, 
fundamental questions remain regarding the 
sediment concentration of the flows, and 
whether the basal layer persists, or if flows 
transition to a state in which turbulence 
alone supports sediment and what and how 
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this dense basal layer interacts with the bed 
morphology. 

There is thus fundamental gap in 
understanding bedform dynamic in 
submarine canyon-channel-fan systems that 
is related to a need to obtain and integrate 
measurements from full scale supercritical 
turbidity currents, their associated bedforms 
and samples of their resultant deposits. Such 
integration, which has until very recently 
been out of reach, would allow the 
resolution of these discrepancies between 
model predictions of bedform dynamics and 
outcrop observations of bedform deposits 
from these settings. 

Here we present the first combination of 
detailed (sub-minute resolution) 3D flow 
monitoring at multiple sites along a canyon-
channel system, high-frequency seabed 
mapping, and sediment core data from two 
active turbidity current systems. The aims 
are to: 1) understand how crescentic 
bedforms are formed beneath supercritical 
flows; 2) use these observations to reconcile 
process mechanics and flow-form 
interactions and the elucidate discrepancies 
between existing experimental depositional 
models and outcrop observations; and 3) 
provide diagnostic criteria to confidently 
identify crescentic bedforms and thus 
supercritical flows in the geological rock 
record. 

2 STUDY SITES AND DATASETS 

Results will be presented from Monterey 
Canyon, USA and both Bute inlet and 
Squamish Inlet, Canada.  

Bute and Squamish inlets are located on the 
western coastline of Canada. The fjords both 
have proximal detltas and have channels on 
the base of the fjords that extend, in the case 
of Bute, for over a length of 40 km. As such 
they represent modern examples of a 
submarine channel developing under the 
modification of turbidity currents (Prior & 
Bornhold, 1988; Conway, 2012).  

Monterey canyon is located on the Pacific 
California mid coast extending from Moss 
Landing to over 2000 m.  

2.1 Morphodynamics measurements 

Modern bathymetric mapping and sampling 
techniques are increasingly being applied to 
submarine channel studies. Bathymetry was 
collected from a range of vessels across the 
study sites at different temporal resolutions, 
revealing unprecedented details of these 
types of bedform fields (Figure 1). This 
included daily surveys in Squamish and 
Bute Inlets to monthly repeat mapping using 
AUV in Monetary, targeted to map before 
and after distinct recorded events across a 12 
month period. The data were analysed to 
understand the evolution of the bedform 
fields to compare bedform wavelength 
evolution with slope patterns formed by a 
range of supercritical flows. 

Figure 1. A. Squamish river location. B. 
Downstream of the delta lie three submarine 
channels covered by crescentic bedforms. C. 
Location of flow dynamics observations, 
June 2015. D. Location of coring expedition, 
June 2016 (from Hage at al. 2018). 

2.2 Turbidity current monitoring  

In both Bute and Monterrey a suite of fixed 
moorings, were deployed (e.g. Figure 2). 
Each had a range of equipment installed, 
including Acoustic Doppler Current 
Profilers (ADCP). Moorings were placed 
within the submarine channel axis 
positioned from the proximal areas to the 
distal lobe of the system in the case of Bute 
and to over 1850 m in Monterey.  
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Figure 5: Velocity maximum from ADCP 
data and basal flow velocity derived from 
the particle collision noise for the five 
moorings that recorded data during the Jan 
15 event, (F) flow speed derived from 
particle collision noise compared with the 
maximum ADCP velocity and transit speeds 
between the moorings (from Simmons et al., 
in prep). 

2.4 Deposits 

Hage et al. analyse four months of near-
daily bathymetrical surveys to study the 
stratigraphic evolution resulting from 
upstream migration of crescentic bedforms. 
The uppermost part of the stratigraphy (Fig. 
3a) contains up to 3 m thick successions of 
individual beds that dip upstream. Individual 
back-stepping beds are 0.1 m to 0.5 m thick 
and result from the most recent turbidity 
current depositing sediment on the stoss-side 
of the bedform thus causing them to migrate 
upstream. They show that occasionally, 
large flows cause significant upstream 
migration of the bedforms, eroding the 
seafloor deeper and producing thicker, back-
stepping beds. The lower portion of these 
thicker upstream migrating beds is preserved 
typically as 1 m to 2 m thick lens-shaped 
scour fills, as seen in the lower part of the 
final stratigraphy (Figure 6). 

Figure 6. Along-strike stratigraphy 
computed from 106 bathymetrical surveys 
and comparison of the features with ancient 
crescentic bedforms deposits (from Hage et 
al., 2019). 

Additional to the computed stratigraphy a 
set of cores to sample the facies 
characteristics were also acquired. The 
sediment cores all contain multiple units of 
massive sands, which are ungraded to poorly 
graded. Contacts between beds are sharp and 
erosive. Individual beds are therefore 
inferred to result from individual turbidity 
currents (Figure 7).  
Envisaged deposit architectures can range 
between two end-members: 1) regular back-
stepping beds that correspond to a full 
bedform preservation; 2) scours filled with 
massive sands that correspond to low 
bedform preservation (Figure 7). The 
preservation potential of these bedforms 
depends on both the magnitude of the 
formative turbidity currents and the net 
aggradation rates and the dynamics of any 
dense basal layers in the largest flows. 

Figure 7. Summary schematic of crescentic 
bedforms formed by supercritical turbidity 
currents and their depositional architecture. 
1: Low density upper part of the flow, 2: 
High density lower part of the flow with 
hydraulic jump formed on changing 
gradient over bedforms, 3: Deposition & 4: 
Erosion by active event. Red line 
corresponds to the resulting bathymetry 
after a single flow. Black lines are 
observations from Fig. 3A. Grey lines are 
predictions (from Hage et al., 2019).  
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3 SUMMARY 

Crescentic bedforms in submarine canyon-
channel-fan systems are enigmatic features. 
A suite of novel data has been collected 
from three systems where crescentic 
bedforms and ubiquitous. The results reveal 
a complex relationship between turbidity 
current flow characteristics, sediment 
transport dynamics, and the possible 
presence of a dense basal layer. The results 
are allowing insight into these processes and 
what these processes can produce in terns of 
signatures in the rock record.    
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